HIGH PERFORMANCE COOLING AND LOW-INDUCTANCE BUSBAR-CAPACITOR SOLUTIONS FOR SiC INVERTER

PowerAmerica Annual Meeting – Raleigh, NC - Feb 2020
Mersen Solutions for SiC electronics

February 2020

Mersen in Brief
A France-headquartered traded company. Mersen USA Corp. in Rochester-NY

Sales
€950M

Staff
7,000

Geographies
- 33% North America
- 34% Europe
- 33% Asia and RotW

Advanced Materials
- Anticorrosion Equipment
- Graphite Specialties
- Power Transfer Technologies

Electrical Power
- Electrical Protection & Control
- Solutions for Power Management

*As of December 31, 2019
Introduction: Mersen is active all over the SiC value-chain

Crystal Growth, Epitaxy and Power Conversion

- **Crystal Growth:** Sublimation PVT reactors
- **Wafering Polishing:** SiC ingot “boule”
- **Epitaxy:** SiC Wafer
- **Wafer carriers:** SiC epi-wafer

Graphite insulation & components

Front-End

- Lithography, deposition, etching, implantation, metallization...
- Bare-die “chip” Diode, MOSFET, J-FET
- **Binning, pick-and-place** packaging, housing
- **Discrete** power module
- **Power Converter**

Applications

- Busbar, Cooling, Capacitors, Fuses....
Mersen has a comprehensive range of graphite and insulation solutions for SiC production

Graphite crucible
- contributes to the chemical composition of the single crystal
- controlled CTE, controlled reactivity with the gases, controlled thermal conductivity
- extreme purity (7N) of the graphite

CALCARB® insulation
- spatial consistency,
- low thermal conductivity at 2,400°C
- ability to be precision machined
- high purity

<table>
<thead>
<tr>
<th>Running temperature</th>
<th>Cycle duration</th>
<th>Ingot weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,400°C +/- 2°C</td>
<td>3-5 days</td>
<td>5-10 kg</td>
</tr>
</tbody>
</table>
INFLUENCE OF SILICON CARBIDE ON SELECTED POWER COMPONENT SPECIFICATIONS

- **Full SiC @ 100kHz**
 - High power density specific cooling
 - Ultra-low induct. Busbar
 - Ultra-low induct. Fuses
 - High T° busbar & film caps

- **Full SiC @ 48kHz**
 - Advanced small dimension cooling
 - Low induct. Busbar
 - Low induct. Fuses
 - Film caps

- **Full SiC @ 24kHz**

- **Full SiC @ 16kHz**

- **Hybrid Si IGBT + SiC diode @ 16kHz**
 - Standard cooling
 - Cables or busbars
 - Standard caps
 - Standard fuses

- **Reference: Full Silicon: Si IGBT + Si diode @ 16kHz**

- **Small dimension cooling**
 - Laminated busbars
 - Advanced fuses
 - Advanced caps (film or elect.)

Credit: ABB
Addressing SiC Applications with Mersen Line of Products

- Low inductance [cap-bus bar] connection: Fischerlink™
- Cooling solutions for SiC applications
- High temperature Capacitors
- High temperature bus bar, 130°C and 180°C, Low Partial discharge, creepage and clearance up to 10kV. Mhi-Txx™ series
Embedded Heat-Pipe: Pushing the limits of air cooled heat-sink

~30% reduction in T° rise compared to standard Al heat-sink

- A heater block, simulating a power module, has been placed at the same location on 3 different heat sinks (Al+MeHP, Al and Cu) with same geometry. T° rise is measured at the heater location as a function of air velocity.

![Diagram showing temperature rise over ambient temperature for different materials](image)

<table>
<thead>
<tr>
<th>Material</th>
<th>Average T° rise</th>
<th>Cost comparison</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al blank</td>
<td>Ref = 1</td>
<td>Ref = 1</td>
<td>x 3.5</td>
</tr>
<tr>
<td>Cu blank</td>
<td>-23%</td>
<td>x 4</td>
<td>1</td>
</tr>
<tr>
<td>Al + MeHP</td>
<td>-30%</td>
<td>x 1.25</td>
<td>1</td>
</tr>
</tbody>
</table>
IMPACT OF eHP ON SiC MODULE THERMAL SPREADING

NO HOT-SPOT ANYMORE!

BLANK HEATSINK

EMBEDDED HEAT PIPE MeHP

(INserted inside the Baseplate)
IsoMAXXTM: THE ULTIMATE LIQUID COOLING SOLUTION FOR MODULES

No ΔT module-to-module, no ΔT chip-to-chip

- **AN INNOVATING COUNTER-FLOW “WAVY SPIRAL” DESIGN, HAS BEEN DEVELOPED FOR IMPROVING THERMAL MANAGEMENT OF LATEST GENERATION OF Si & SiC POWER MODULES. IT OFFERS:**
 - **Better thermal performances:** $R_{th} \sim 6 \, ^\circ\text{C}/\text{kW}$
 (EG 50%, 250 mm modules, 3kW power losses and 5 liter/min per component.)
 - **Lower pressure drop** than all existing designs (~600mbar)
 - **Thermal homogeneity** chip-to-chip (all chips at the same T°) and module-to-module on a multi-module cooling plate
 - **Compact design:** distance between modules can be optimized \rightarrow Inverter size reduction
 - **Modular solution:** covers all PrimePACK™ types, whatever the number of modules on the plate
 - **Cost competitive** compared to others efficient designs

Homogeneity: < 2°C ΔT chip-to-chip
Pressure drop: 565 mbar

Homogeneity: no ΔT module-to-module

Homogeneity: no ΔT module-to-module
Recent Trends in WBG Power Conversion

How to Reduce Stray Inductance While Increasing Overall Power Density and Junction T^o?

New module design

Power module makers are working on new designs for their power modules in order to stay competitive against press-packs for high-voltage devices. The most popular solution is reducing the distance between internal connections.

Use of external laminated busbar with low inductance connection

Outside the module, using laminated busbar offers strong reduction of parasitic inductance.

Use of internal laminated busbar

Along with the emergence of SiC, the switching frequency reaches several ten’s of kHz. Internal laminated bus bar can offer a real added-value to decrease the inductance while connecting the chips together.

Credit: CREE
A PERFECT MATCHING [INSULATION – RESIN/GLUE]

- In order to perfectly match customer’s specifications, Mersen aims at selecting the right material (Insulation and Resin / Glue) with the highest Temperature, Voltage and Mechanical resistance, keeping insulation as thin as possible (to meet low inductance value requirements).

EXAMPLES OF MATERIAL SELECTION AND RELATED THICKNESS RANGE AS A FUNCTION OF MAX. OPERATING T°:

- PMMA
- PP
- PE
- PC (Lexan)
- PVDF (Kynar)
- PA6 (Nylon)
- PBI (Kapton Thick. 25 to 125 µm)
- Polyaramid (Nomex Thick. 50 to 250 µm)
- PAEK (Aptiv), PPS (Fortron), PTFE (Teflon)
- Polyester (Mylar Thick 38 to 330 µm)
- Silicone
- BMI
- Epoxy Thick. 12 to 20 µm
- Polyurethane
- Acrylic thick. 38 µm

MHi-Txx™ laminated Bus bar series: Ready for 105, 130 and now 180°C
How to Decrease Clearance Distance in Power Module Design?

Conformal Bus Bar is an Enabler…

Today’s Industry Standard

Figure 1: Top view of the bushings gap with tall insulating barrier and conformal bus bar design.

Step 1

- Additional tall insulating barrier on power module housing

Step 2

- Removal of intermediate grooves

Gap between bushings can be significantly reduced → More compact module design

Figure 2: Grooves for creepage distance compliance.
INDUCTANCE FUNDAMENTALS IN POWER CONVERTER DESIGN

HIGH INDUCTANCE CREATES VOLTAGE OVERSHOOT AND SURGE AT COMMUTATION

CCL: Commutation current loop

Turn-off waveform

ON
- Short-circuit
- \(V_{ce} = 0 \text{ V} \)
- \(I_{ce} \neq 0 \text{ A} \)

OFF
- Open circuit
- \(V_{ce} \neq 0 \text{ V} \)
- \(I_{ce} = 0 \text{ A} \)

Surge voltage

\[
L_s = \text{inductance of CCL}
\]

\[
V_{CEO} = L_s \frac{di}{dt} + V_{CC}
\]
LOW-INDUCTANCE [BUS BAR-CAP] CONNECTION FOR SiC DC-LINK

FISHERLink™

- **Shorter connection of the cap winding to the busbar by direct connection of the winding tabs to the busbar by laser welding**
- **Up to +20% capacitance in a given volume** (e.g. from 400µF to 480µF @ 1100 Vdc | 4-cap assembly)
- **Extremely low inductance** <9nH
- **Capacitors and busbars packaged together as sub-assembly and single part #**
- **Pre-assembled and 100% tested before delivery → ready for final assembly**
INTERNAL LAMINATED BUSBAR FOR WBG POWER MODULES

SOLUTIONS TO HANDLE 180° Tj @ 100 KHz Fsw... AND BEYOND!

THE AIM:
- Get very low internal inductance by
 - laminated/symmetrical bus bar structure
 - Maximizing metallic conductor overlap
- 50% reduction in switching loss for higher switching frequency (> 20KHz)
- Safe turn-off possible at large current without snubber capacitor

THE ACHIEVEMENT
- Our bus bars can now handle up to 200°C Tj with inductance as low as 35nH and a lifetime operation of 25 years

Customer A
GaN module, 160°C Tj

Customer B
SiC 1,700 V module
150°C Tj

Customer C
SiC 1,200 V module
180°C Tj
SYNTHESIS AND CONCLUSION

- We are glad of being (finally 😊) part of Power America community!!
- Now that WBG have reached the expected maturity, at semiconductor level, it is commonly admitted that remaining issues relate to passive surrounding components (Caps, magnetics, connections, thermal management, fuse…)
- Mersen positions himself not only as a stand-alone components supplier but also as solution provider made of 2 or more components, co-designed and perfectly optimized together
- Let us know your circuit topology along with your physical, electrical, mechatronic, thermal, EMI constraints: we can definitely ease your journey in module and/or inverter design

Co-design & optimization